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Successive band-splitting transitions occur in the one-dimensional map x~+ 1 
= g ( x i )  , i = 0, 1, 2, �9 �9 - with g(x )  = ax, (0 <~ x < 1/2) - ax + a, (1 /2  < x ~< 1) 
as the parameter a is changed from 2 to 1. The transition point from N ( =  2") 
bands to 2N bands is given by a = ( ~ / 2 )  I/~v ( n = 0 , 1 , 2 , - - . ) .  The time- 
correlation function ~i =- (6xi  8Xo)/((SXo)2),  8xl =- xi - (x i )  is studied in terms 
of the eigenvalues and eigenfunctions of the Frobenius-Perron operator of the 

map. It is shown that, near the transition point a = ~ - ,  (i ----- [(10 - 4~ - ) / 17 ]  

8~, 0 - [(10~- - 8)/5116s, l + [(7 + 4~/2) /17] ( -  1)~e -v~, where 7 =--~-(a -~ /2 )  is 
the damping constant and vanishes at a = ~- ,  representing the critical slowing- 
down. This critical phenomenon is in strong contrast to the topologically 
invariant quantities, such as the Lyapunov exponent, which do not exhibit any 

anomaly at a = ~- .  The asymptotic expression for ~i has been obtained by 
deriving an analytic form of ~i for a sequence of a which accumulates to ~ -  

from the above. Near  the transition point a = (~/~)~/u, the damping constant of 

(i for i ~> N is given by YN =~/2( c~jv - ~ f 2 ) / N .  Numerical calculation is also 
carried out for arbitrary a and is shown to be consistent with the analytic 
results. 

KEY WORDS: Chaos; mapping; ergodic; mixing; time-correlation func- 
tion; chaos-chaos transition; Frobenius-Perron operator. 

1. I N T R O D U C T I O N  

I t  h a s  t u r n e d  o u t  f o r  m a n y  p h y s i c a l  s y s t e m s  t h a t  a n  e s s e n t i a l  f e a t u r e  o f  

c h a o s  c a n  b e  r e p r e s e n t e d  b y  a o n e - d i m e n s i o n a l  d i s c r e t e  p r o c e s s  g e n e r a t e d  

b y  a n o n l i n e a r  m a p .  T h e  m o s t  s t r i k i n g  e x a m p l e  is t h e  o n s e t  o f  c h a o s  v i a  
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successive subharmonic bifurcations which can be described by the qua- 
dratic map. (1-7) On the other hand, it is well known that, as far as a strange 
attractor of a dissipative dynamical system is approximately of two dimen- 
sion, (8~ we obtain a one-dimensional map by taking the returning map on 
the intersection of the attractor and a transverse surface. (3'9) Thus, one- 
dimensional maps have been playing an important role in the studies of 
chaotic behaviors of physical systems. 

For successive subharmonic bifurcations leading to the onset of chaos, 
Feigenbaum accomplished a procedure of renormalization of a one- 
dimensional map, (1'1~ and found universal quantities associated with the 
onset. (11) Since then, many efforts have been devoted to discovering new 
universal relations for such transitions on the chaos side. (12-17) However, 
most of them remain phenomenological. Therefore, it would be worthwhile 
to take a simple model and develop a rigorous and analytic theory of 
critical phenomena on the chaos side. 

In many systems, the degradation of chaos occurs through successive 
band-splitting transitions as the controlled parameter approaches the onset 
value of the chaos side. This may be considered as a mirror image of the 
successive subharmonic bifurcations so that the universality also holds here. 
Let us take a simple system generated by the following map: 

= ~ ax  if O < x <  1/2  
g ( x ;  Ol ) (1.1) 

- a x + a  if 1 / 2 < x <  1 

The Lyapunov exponent of this map is 

X(a) = lna  (1.2) 

Successive band-splitting transitions occur as the slope a is decreased from 
two to one. (16'17) It will be shown that a complete procedure of renormaliza- 
tion can be done for this map, and some universal properties can be 
derived by exact calculation. It must be remarked, however, that the onset 
of chaos occurs abruptly at the critical value a - - 1  without successive 
subharmonic bifurcations. In this paper, our discussion will be concen- 
trated on the band-splitting transitions and on a local structure of the 
successive band splittings. A global structure will be discussed elsewhere. (Is) 

One-dimensional maps have been studied extensively by mathemati- 
cians.(19-21) Their interest is mostly directed to the topological entropy, the 
Kolmogorov-Sinai  entropy, the topological pressure, and the Art ine-  
Mazur-Ruelle ~ function. (16'23) These quantities offer important informa- 
tion for understanding chaos. They are, however, insensitive to chaos-  
chaos transitions such as the band splittings, and not useful for the present 
purpose. On the other hand, the time-correlation functions play the most 
important role for analyzing time-dependent phenomena in statistical phys- 
ics, (24) and experimental observations of chaos are usually made on the 
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power spectra. (3-7) In fact the importance of the theoretical study of 
time-correlation functions has been emphasized by physicists recently. (2s-27) 

A qualitative change of chaos by a band-splitting transition is the fact 
that the strong mixing property is lost so that a persistent oscillation 
appears in the time-correlation functions. Then, however, the topologically 
invariant quantities, such as the Lyapunov exponent (1.2), do not exhibit 
any anomalous behavior. (16) The undamped oscillation gradually arises in 
such a way that the damping of a critical mode decreases and vanishes at 
the critical point. This critical slowing-down is a remarkable universal 
property of band-splitting transitions. (29) 

In this paper, therefore, we shall study the asymptotic behavior of the 
time-correlation function of the map (1.1) near a band-splitting transition 
point by carrying out an exact calculation for an infinite set of values of the 
controlled parameter o~ in order to obtain an analytic expression for the 
time-correlation function. This will be done by using a new method 
proposed in a previous paper, (27) namely, by writing the time-correlation 
function in terms of the Frobenius-Perron operator ~ and seeking rele- 
vant eigenvalues and eigenfunctions of ~r In Section 2, we review the 
order relation of unstable periodic orbits of the map, which describes the 
degree of evolution of chaos. We then take two sequences of values of the 
controlled parameter ~, which accumulate to the first band-splitting transi- 
tion point ~ = ~- .  In the first half of Section 3, we review the time- 
correlation functions in terms of the Frobenious-Perron operator ~P,  and 
discuss a matrix representation of ~ .  In the last half, the time-correlation 
function of orbits is formulated for the two sequences of ~ in terms of 
eigenvalues and eigenfunctions of ~ .  In Section 4, we study the asymp- 
totic behavior of the time-correlation function near the band-splitting 
transition point. In Section 5, results of numerical calculation are reported 
for the maps with o~ being taken arbitrary, and compared with the analytic 
form for particular a's. In Section 6, we discuss an asymptotic form for a 
map with asymmetric slopes and conclude with a short summary. 

2. EVOLUTION OF CHAOS 

Whenever a continuous map f has a nonperiodic orbit, f also has 
numerous unstable periodic orbits. These periodic orbits have an order 
relation with respect to their existence, i.e., the Sarkovskii order (3~ 

3 1 -  5 / - 7 [  . . . .  I - 2 •  . . . .  

. . .  [ - 2 ~  •  • 51 -2~  • . . . .  

�9 . .  [ -  2nl . . . .  [ -  81 - 41 - 21 - 1 (2.1) 

where the first two lines consist of the ascending sequences of 2n•  M, 
(M = 2m + 1) with n = 0, 1,2 . . . . .  and the last line is the descending 
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powers of 2. This sequence of positive integers indicates that, if f has a 
periodic orbit of period p, then f also has a periodic orbit of period q for 
every q which lies on the right-hand side o fp  in (2.1). 

For a one-humped continuous map f,<2,> a more severe relation holds 
in terms of the topological entropy 2 associated with a type of a periodic 
orbit. Let ~- and ~-' denote two types of periodic orbits. If the map f has the 
periodic orbit of ~- with ~ (~-) > ~ (Y), then f also has the periodic orbit of ~". 
With the aid of the map (1.1) with e~ = 2, the new order may read as 
follows: if a continuous map f has a periodic orbit of type ~', then f has a 
periodic orbit of type ~-' for every type ~-' such that the maximum value of 
the orbit ~-' is smaller than that of the orbit ~- in the map g(x; c~ = 2). See 
Fig. 1. 

Let us return to our map (1.1). A periodic orbit of odd period 
M = 2m + 1 exists if and only if a /> O~M, where a M is the positive root of 

1 

g(x) 

Ox:o X:1 
(a) 

2 The topological entropy of f is given by 

= lira 1 log l(f(")) htop(f) 
n - - >  oo n 

where f(") is the nth iterate of f and l(f) is the minimum number of intervals necessary for 
dividing the whole interval into small intervals on each of which f is monotone and 
continuous. On the other hand, ,/($) is the topological entropy of a piecewise linear map 
which is the polygonal line obtained by connecting every point of a periodic orbit ~- by 
straight lines in order. 



g(x) 

0 

04=2 

IEI 

!I:! 
iI~:i 

X=O X=1 
(b) 

0(.= (,/~+1)/2 

g(x) . . . . . . . . . . .  

. . . . .  1 

,\ i 

i n 
X=O X= 

(c) 

Fig. 1. Periodic orbits of the map g(x; a) given by (1.1). (a) Three types of period-5 orbits in 
the case a = 2 are shown. The full and  dot-dashed lines represent the maximal  and minimal 
orbits, respectively. (b) Minimal orbits of periods 3, 5, and 2 are shown in the case a = 2. The 
periodic orbit of period 5 has the same topological entropy as the minimal  orbit of (a). Thus, 
there are two different orbits for each type of periodic orbits. The dot-dashed line represents 
an  orbit which falls into the fixed point x = a/(l  + a), All orbits of odd periods must  go 
through the outside of this orbit. Hence, as this orbit passes the vertex, all odd periods 

disappear. (c) The minTmal orbits of periods 3, 5, and 2 are shown in the case a = (~/5 + 1)/2. 
The relative configuration of the orbits is the same as that of (b). f~ denotes the attractor. 
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the algebraic equation 

0/2m+'--242m l 1 = 0  ( 2 > C % > ~ / 5 )  (2.2) M 

where 0/M > 0/M+2 > a ~  = ~ - .  Therefore,  all periods exist if a > 0/3 
= (1 + ~ ' ) / 2  = 1.618. As 0/is decreased to a ~  = ~- ,  however, odd periods 
disappear successively in the Sarkovskii order and all odd periods 
disappear at a = ~ ,  where the attractor splits into two bands. This is the 
mechanism of the band-splitting transition. 

Below a - - ~ - ,  each of the two bands repeats the above process in the 
map g(2)(x) with slope 0/2 and splits into two bands at 0/2 ..~_.~-. Thus it 
turns out that period 2" • M disappears below 

a = 0/n:M ----- (0/M) 1/N ( N  =-- 2") (2.3) 

and the attractor splits into 2N bands at a = a , : ~  = 21/2N. All periods 
disappear at a = a ~ :  ~ = 1 where chaos disappears. 

In order to study the long-time behavior near the first band-splitting 
transition point a = ~ - ,  we take two sequences of 0/'s accumulating on ,/5. 
One is the sequence {a2m+l } (m = 1,2 . . . .  ). At 0/= 0/2m+1 the vertex of g 
lies on the minimal orbit of period 2m + 1. The other sequence consists of 
a ' s  less than v~, at which the maximal orbits 3 of g(2) in each band appear  

successively with periods 2(m + 2), as 41"~-. Namely, the maximal orbit of 
period N = 2(m + 2) exists in the map g(2) if and only if 0/> a N where 

0/2(m+ 2) __ 20/2(m+ 1) -t- 1 ~" 0 ( ~ "  > aN > 4~- ) (2.4) 

At 0/= a N the maximal orbit of period 2(m + 2) passes through the vertex 
of g. For these sequences, exact calculation of the time-correlation function 
of orbits can be done with a little effort. It  is, however, very hard to do it 
when 0/falls into a value where the vertex of g lies on a nonperiodic orbit. 
In such cases, numerical calculation has been done and will be reported in 
Section 5. It turns out that the analytical results are consistent with the 
numerical ones. 

3, T IME-CORRELATION FUNCTIONS IN TERMS OF 

Let us consider a one-humped continuous map f ( x )  which has no 
stable periodic orbit. Namely, f is ergodic on an attractor fL (20 Then there 

3A minimal orbit of period m is the periodic orbit whose topological entropy takes the 
minimum value among periodic orbits of period m. Similarly, a maximal orbit of period n 
corresponds to that with the maximum topological entropy among periodic orbits of the 
same period. 
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exists a unique absolutely continuous invariant measure 4 I~(dx) = P~(x)dx 
so that the long-time average can be replaced by the space average over f~ 
with the invariant density Pf*(x). (31) For almost all initial values x, the 
time-correlation functions takes the form 

N-1 
C ~ ( A , B ) =  lim 1 N >m N 2 A(f(n+~)(x))B(f(")(x)) (3.1) 

n = 0  

= A f~ (f(k)(x))B(x)~(dx) ==-<J[A(x) IB(x)) x (3.2) 

where - I f  indicates the time-evolution operator defined by (26) 

J f A  (x) =-- A (f(x)) (3.3) 

The Frobenius-Perron operator ~ f  is the adjoint operator of i f .  Let 
/~0 be the usual Lebesgue measure. Then, we have (27) 

< SIA (x)I B(x)>,= fay A (y)fs(y - f(x))B(x)P? (x) dx 

= <A (x) I ~ ,  {B (x)P? ( x ) ) ) o  (3.4) 

with 

~ ,  C(x)  - - f d y  8 (x - f ( y ) )  G(y)  (3.5) 

= ~ 1 
Yi :f(yi) =x [f'(Yi)[ G(yi) (3.6) 

It is obvious that the invariant density P~(x) is the eigenfunction of ~*f 
with eigenvalue unity: 

i~fP)* (x) --- P? (x) (3.7) 

Therefore, the time-correlation function (3.2) can be transformed into 

Cn(A,B ) = (A (x) I ~ P f  {B(x)e~ (x)})0 (3.8) 

This can be calculated exactly if one can find all relevant eigenfunctions of 
; ~ f  explicitly. 

For the map (1.1), the attractor is located in the interval [c~(1 - a /2) ,  
c~/2]. Let us change the coordinate x by a scale transformation so that the 
interval is transformed into [0, 1]. Then, the map g is transformed into 

f ( x )=  ( a x + 2 - c ~  if 0 < x <  1 - 1 / a  (3.9) 
-c~x+c~ if 1 - 1 / ~ x < x <  1 

4 Here, we also assume that f is a piecewise C2-function. Then, f has a unique absolutely 
continuous invariant measure. In fact, the mapping (1.1) is such a function. See Ref. 20. 
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and we have 

( J ; A  (x) l e (x)}a  

= ( S f ~ A (  2a-~22 - - + - -  a2-a2  x) B(  2c~-a22 + a2-c~2 x)} 
Y 

(3.1o) 
Our calculation will be done for (3.9), since only the autocorrelation 
function of the deviation 3x - x - ( x ) f  is calculated, and the normalized 
one by its initial value does not change by the transformation. 

Substituting (3.9) into (3.6), we obtain the simple form 

( x  / ~ I G ( X ) = - - s  - ~ E ( x ; 2 - a ,  - -G - - + 1  (3.11) 
Ol O/ O~ 

where E(x; a,b) denotes the characteristic function of the interval [a,b]; 
namely, 1 if x ~ [a,b] and 0 otherwise. We find in (3.11) that a continuous 
function G(x) which has G(0) v a 0 is transformed into a function which is 
discontinuous at x = 2 - a by G(O)/a. Therefore, a repeated operation of 
;g/of produces a highly discontinous function. The new appearance of 
discontinuity points finally stops if the discontinuity points cover a closed 
orbit, such as a periodic orbit, a fixed point, and an orbit falling into them. 
Then, we have a subspace ~ of the function space L2[0, 1] such that 
~ f u j  E Xj for every uj E Xj and the dimension of Xj is finite, Xj is 
equivalent, namely isomorphic, to a vector space with the same dimension, 
where ~ f  corresponds to square matrices. For calculation of the time- 
correlation functions, relevant functions are only those having the same 
discontinuity points as the invariant density P:(x). These points are identi- 
cal to the boundary orbit with initial value x 0 = 1. Thus, the time- 
correlation functions can be exactly calculated by use of vector analysis, if 
the controlled parameter a gives a closed boundary orbit. Such examples 
are given in the following. 

Let us start to calculate the autocorrelation functions of x for the two 
sequence of a's mentioned in Section 2. For simplicity, henceforward, the 
first sequence of a's will be referred to as Case (I), and the second as Case 
(II). According to the illustration of Fig. 2, the interval I is divided into N 
intervals I ] , I 2 , . . . ,  I N. Let the j th element of N-dimensional column 
vectors a and b denote the coefficient of x and the constant term on thejth 
interval I j, respectively. Therefore, the first-order function of x is repre- 
sented by the vector form ax + b. 

The Frobenius-Perron operator ~ f  can be written as 

~ f ( a x  + b) = (o~ffla)x + ( J o b )  + (~'~ina) (3.12) 
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f(x) 

0 i i i i i 

X = 0 X=I 
(a) 

f(x) 
- I 

0 ' ' 

X=O X=1 
(b) 

Fig. 2. The  m a p  f ( x ;  a)  for two values  of a.  In (a), a is a M of (2.2) with M = 7, and,  in (b), 
a u of (2.4) with N =  8. Ij is t h e j t h  interval  of (A.1), ( j  = 1,2 . . . . .  6). 
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where ~ o ,  ~f~l and ~ i n  are the N • N matrices defined by 

( -  1) ~ 0 0 

( - 1 )  ~ 0 0 

o ( - 1 )  ~ o 
~efa ~ 1 

O~ a + l  

0 0 
( - 1 )  ~ 0 

0 ( - 1 )  ~ 

for Case (I) 

0 

0 

(3.13a) 

OL ~  

0 
( - 1 )  ~ 

0 

0 
0 

( - 1 )  ~ 

0 0 0 
( - 1 )  ~ 0 1 

0 ( - 1 )  ~ 0 

for Case (II) (3.13b) 

);~(Fo - ~ l  for Case (I) and (II) (3.14) ~d~in ~ - (  1 - -  al 

where o = 0, 1. It should be noted that (3.13) is still valid even if ~ o  
operates on the coefficient vector of the x %term. The kth eigenvalue of W0 
is indicated by (sk/a). Let bK and b~ be its right and left eigenvectors: 

( sk ) * h , (s~'  
~Ylobk = ~ bk, b k ~ 0  = "k~ ~ )  (3.15) 

Using similar notations for ~eg~l, we have 

~ l a k  = a k , ak~ggD1 = a k 

The scaled eigenvalues, s k and tk, satisfy the eigenvalue equations 

S 2 m + l  - -  2S 2 m - I  - -  1 = 0 with s v ~ - 1 for Case (I) (3.17a) 

s 2('~+2) - 2 s  2(m+]) + 1 = 0  with s=/= +1 for Case (II) (3.17b) 
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and 

t 2 m + l  - -  1 = 0 with t =~ • 1 for Case (I) (3.18a) 

/ 2 ( m + 2 )  __ 1 = 0 with t ~ _+ 1 for Case (II) (3.18b) 

respectively. Since the boundary conditions, (2.2) and (2.4), are equivalent 
to (3.17), unity is the maximum eigenvalue of ~ 0  with sl = a. Therefore, b 1 
gives the invariant density P j * ( x ) .  (3.17) also has a negative root such that 
1 < Isl---> o~ as m--> oo for Case (I), and s = - a  for Case (II). This eigen- 
value plays the central role in the band-splitting transition, and is denoted 
by s 2. The others give the remained eigenvalues of ~f'~0 whose absolute 
values tend to 1 / a  as m--> or. The asymptotic behavior of s k will be 
discussed in Section 4. The eigenvectors, b k, b~,, ak, and a~ are given in 
Appendix together with other quantities appearing in the course of our 
calculation. Since a homogeneous function of x is mapped to an inhomoge- 
neous function by ~,~f as implied by (3.12), eigenfunctions of ~ f  for a 
polynomial of the first degree take the form 

N 

x k = akx + ~ bd3lk (3.19) 
/ = 1  

The coefficients fl_lk are determined under the condition 

tk 

with (3.12)-(3.16). It is noted that no pair among the eigenvalues of ~ 0  
and ~'~1 take an identical value. Of course, this situation is not universal, 
and breaks down, for example, when the boundary orbit is a closed orbit 
other than a periodic orbit; see (4.12). Thus we have 

a2 ( a -  1)s / - t k 
f l ,  k - tk _ as~ (b}~" ;Ye~i"ak) - t k - as ,  (b~. ak) (3.21) 

The set (a~,a~) gives an orthonormal base of the N-dimensional vector 
space, as well as {bk,bk). Under the vector representation of P T ( x ) ,  

therefore, we can write 

x P T ( x ) ~ b l x  = ~, x k - ~, bzfl,k a~ .bl)  (3.22) 
k = l  l = 1  

k = l  l = 1  

Next we have to integrate these quantities over the interval I with an 
appropriate weight. Let us introduce N-dimensional row vectors e~ whose 
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j th  element cff; j is given by 

c~; j = ( x  k dx (3.24) 
% 

It is obvious that cJ = b~'. Therefore the averages can be written as 

( x ) f  = (c~' "ba), (x2)f  --- (c~' "bl) (3.25) 

and the time-correlation function takes the form 

Cn(X'X) = E C~ "ak) + 2 (c~' �9 b,)/3,k (a~ .bt) 
k = l  l = 1  

~ ( ~ ) ( C ~  "b,) fl,k (a~ .b,)  (3.26) 1 

l = 1  k = l  

The details of this calculation are given in Appendix. For/31~ = -(e~' �9 ak), 
as shown in (A.15), the s I term in the last summation of (3.26) is equal to 
-(x)}. Finally we find the following expression for the normalized auto- 
correlation function of 6x -- x - (x)f :  

~.(a) =-- C.(~x, ~x)/Co(~X, 8x) (3.27) 

~--- S~2 0 2 ( 0 / ) " t "  -- B l (OL) ' t -E  7 A , ( a )  ( 3 . 2 8 )  
o~ = o~ l=1 

where 

2(a 2 -  1)214 + (o~ 2 -  2)N*] 
- 

9 - 2a + 2a 3 - an + 2(a2 _ 2)N* 

+ l) 
• ( a 2 + s z ) ( s ~ + a 2 _ 2 ) i a + ( s ~ _ 2 ) N , ]  ( 2 ~ < l < N )  (3.29) 

2 - 1)214 + 2 ) N *  l 
Al(a ) =-- 

9 - 24 + 243 - -  o~ 4 -t'- 2(a 2 - 2)N* 

( 1 -  t~)[2 ts _ 2c~2(42 - 2)] 
• 

3N*tk(a + tk)(a 3 + t~)[ 4 + 42( 4 2 -  2)] 

with the period N* of the boundary orbit: 

N* _~ 2m + I = N + I 

= 2(m + 2) = N + 2 

(1 < I < N )  (3.30) 

for Case (I) 

for Case (II) 

(3.31a) 

(3.3 lb) 
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As the next section is prepared to discuss the asymptotic behaviors of 
~, in details, we give a brief comment. For ~-  > a > 4~- s2 = _ a  so that 
the first term of (3.28) describes the undamped oscillation of period 2, and 
its amplitude B 2 remains finite in the limit a ' ~ .  But the other modes 
damp and their amplitudes vanish as O(1/N*) in this limit. As a$~- ,  
s 2 5 - a  so that the critical mode damps but slightly, while the other 
situations mentioned above are fundamentally invariant. Finally, let us 
examine the simplest cases, namely, m = 1. Then, the boundary orbit has 
period 3 for Case (I), or period 2 • 3 for Case (II). Their eigenvalues are 
given by 

s{~} -- 1 (1 + ~ - ) ,  

1/2 

~r i), t I = t~ = exp( -5 

exp( i) 

t3=tt4=exp(-~-i) j 

for Case (I )  

(3.32a) 

for Case (II) 

(3.32b) 

where a t denotes the complex conjugate of a. Substituting these values into 
(3.28), (3.29), and (3.30), and taking into account a = sl, we obtain 

1 " 2 1 ~  1 sin n at o~ - ~ / ~ + 1  (3.33a) 

(n(a) = 0.9466 • ( -  1)" + 0.0535 

(1;[ )1 • cos o- 

( 1 ) n [ s i n ~ n  +__~5~- ( s i n ~ n + s i n - ~ n )  -- 0.0260 • ~-~ 

~ / 5 ( c o s ~ n - c o s ~ n ) ] 6  

at o~ 2 - ~ ~  + 1 2 (3.33b) 

Equation (3.33a) agrees with that obtained previously. (27) We find that the 
second term of (3.33b) agrees with that obtained by rescaling the time scale 
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of (3.33a) twice. This agreement represents the renormalizability of f(a) of 
a = a ~  3 to f of a = a 3, where a 3 = (~/3- + 1)/2. (1) Odd times iterated maps 

of f of a = a ~  3 , however, are not renormalizable to f of a = a 3. The last 

term of (3.33b) cannot be transformed to (3.33a). Therefore, the complete 
renormalizability to (3.33a) in the power spectrum breaks down. A detailed 
discussion of the renormalization in this successive transition is given 
elsewhere.( ] 8) 

4. A S Y M P T O T I C  BEHAVIORS OF ~n NEAR THE 
CRITICAL POINT a = ~-2  

We first discuss the asymptotic behaviors of ~n as a approaches ~ .  
Then ~, at a - - ~  is calculated independently, and compared with the 

asymptotic one, since the critical point ~/2 is not contained in our se- 
quences. 

Let us return to the eigenvalue equations (3.17): 

2 2 + ( 1 )  2m-' 
SK = 7 w i t h  s k :7 ~ 1 for Case (I) (4.1a) 

+ (  1 ]2m+, S k ~ l  for Case(II)  (4.1b) sk 2 25 = 2 with a 
\ Sk ] 

This relation can be represented by a triangle on the complex plane as 
shown in Fig. 3. Each term corresponds to each side. Since the absolute 
value of s k is restricted by a triangular inequality, we have two real roots, 
s I = a and 1 < - s  2 < a, and (N - 2) complex roots such that [Ski < 1. The 
N is related to period N* of (3.31), and N* can be written as 

N* = 2 lnlagm)- 21 
In a(m) (4.2) 

w h e r e  OQm ) = OZ2m+t for Case (I) and Ot2(m+2) for Case (II). Equations (2.2) 
and (2.4) give for large m 

a(m) _ ~-  ~ - - m  with ~ -- 2 (4.3) 

This convergence rate ~ has the same value as the accumulation rate 3 of 
the successive transitions near a = 1, reflecting the linearity of the continu- 
ous map f. In the single band region, s 2 can be written as 

[ 1 ~ -~/2 + (a(m) -~-2) (4.4) s 2 = -  2 +  72 



Analytic Study of Power Spectra of Tent Maps 663 

(2m-1)e / 

~ ( I_L~ 2(m.I) 

Fig. 3. The triangles represent the relation of (4.1) on the complex plane, where s k 
= rexp( iO) .  (a) is for (4.1a), and (b) for (4.1b). In the limit m--->m, r -2m can take the null 
value or a finite value c such that 1 < e < 3. The former limit arises from the two real roots s 1 
and s 2. The latter occurs from the remaining (N - 2) roots of (4.5). 

for  l a rge  m a n d  goes  to - ~ -  wi th  the  s a m e  c o n v e r g e n c e  ra te  ~ as a $ ~ - .  

T h e  c o m p l e x  roo t s  a re  g iven  fo r  la rge  m b y  

wi th  16k] ~< 1 (1 ~< k~< m -  l)  (4.5) 

S imi la r ly ,  in the  t w o - b a n d  region,  s 2 = - a ,  a n d  the  c o m p l e x  roo t s  d is t r ib-  

u t e  h o m o g e n e o u s l y  on  the  un i t  c i rc le  in the  l imi t  a J ' ~ - .  
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with 

As a--->~-, the amplitude Bt(a ) with I >/3 has the limit such that 

8 ( 5 -  2V~-) (e i x -  1)2(e ix + 1) 
lim N* B, (a) = . (4.6) 

,_~/g 17 e'X(2 + eiX)(2 --  e 2ix) 

lim ~ (k + 8k ) = x (4.7) 

where we have used (4.2). Taking into account the homogeneous distribu- 
tion of s~>3 on the unit circle, we can write the second term of (3.28) for 
large m as 

8(5 1 2 ~ )  1 ) n 
l_-~3 \ Ot ] 

• 1 (: '~dxei( , - l )x  ( e i x -  1)2(eix "Jr" l )  
a0 (2 + eix)(2 - e 2ix) (4.8) 

This situation is also applicable to the third term of (3.28), since t k is a 
complex N* power root of 1. Then, we have for large m 

N t n l=l~' (aJ22) A/(a) ~ 8(5~-51-4) (1)n 
1 r2~r e2iX X I dxe i('-l)x 1 -  (4.9) & (~f2 +eiX)(2~[2 +e ix) 

The first term of (3.28) takes the asymptotic form for large m, 

( s ! )  ~ B 2 ( a ) ~ 7 + 4 f ~ a  17 ( -  1 ) % x p [ - ~ - ( a - ~ - ) n ]  (4.1o) 

in the single band region, where (4.3) and (4.4) have been used. In the 
two-band region (4.10) must be replaced by that without damping. 

The integrals of (4.8) and (4.9) can be easily calculated with the help of 
complex integral. The origin is the only pole which contributes to these 
integrals for n = 0 and 1. There is no pole contributing to them for n >t 2. 
Thus, the contribution to the power spectrum from all damping modes 
except the critical mode is nearly white. Thus finally we obtain the 
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asymptotic form 

~,(a) ~ 17 8"~ 51 8"'1 

+ q 7 + 4 ~  
17 

- (~ ' )  = ~ /2 ) (4 . ]  1) 

in the single band region near the band-splitting transition point a --~;~. 
Equation (4.11) indicates the validity of the gate image which was 

discussed in a decay of metastable chaos by Yorke and Yorke ~32) and 
applied to band-splitting transitions by Schenker and Kadanoff. (29) It tells 
that, under f, (2) the mean trapped time of points in one band is proportional 
to the width of the narrow gate which is the interval mapped out of the 
band. It appears as the decay time of the third term of (4.1 1). The first two 
terms describe the mixing process in the one band, which has a B- 
correlation under f(2). 

We can show the behavior of ~, at ~ = V~. The state functions relevant 
to ~, may be discontinuous at the fixed point or the vertex of f(x). Then, 
J r0  and YZf~ of (3.12) must take the form 

;U~0 =-~-1 (i  0 i ] 0 1  ' J g " =  11!2 -100 -I]_10 (4.12) 

where the first, second and third intervals are [ 0 , 1 -  1/,/2-], [ 1 -  
1 / ~ , 2 - v ~ ]  and [ 2 -  ~2-, 1], respectively. All eigenvalues of ;Y/)l are 0, 
while those of ;~'Y~o are 1, - 1 and 0 whose eigcnvectors are 

4 v~ ~ - ' b3 = ~ - ( 4 . 1 3 )  

~r 3 This situation for ~ f l  leads to .... l -- 0, and we have 

- + b2 x + @ h ,  + b2 (4.14a) 

~/)2b] x _ 5 -42~2U b, 3 +42~/2- b2 (4.14b) 
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Then, it is easily shown that 

[ ( x ) } +  1 ( 7 - 4 ~ - )  if n = 0  

C n ( X , X ) = l ( x ) } +  ~8(5-6~/2)  if n =  1 

[ ( x )  } + 1 ( _ 1 ) "  if n > / 2  

(4.15) 

with ( x ) f =  ( 5 -  2~-) /4 .  This strictly coincides with that of (3.26) as 
a = ~-.  Therefore, it is obvious that ~n at a = ~-  is given by 

~n(~/2) - 1014~- ~n0 1 0 ~ - - -  8 ~n,1 _1 - 7+4~- - -  ' 51 1 ~  ( -  1)~' ( 4 . 1 6 )  

which is just that obtained by substituting ~-  for a in (4.11). 

5. NUMERICAL CALCULATION 

We have calculated the time-correlation function of orbits for the two 
sequences of a. There exists the question whether the behavior of the 
time-correlation function for these values of a is generic or nongeneric. The 
answer is given by studying it for a being taken arbitrarily. However, it is 
very hard to calculate the time-correlation function when a falls into a 
value where the vertex of f lies on a nonperiodic orbit. Actually it occurs 
for almost all a > 1. In such cases, we have studied the time-correlation 
function by numerical iteration calculation instead of analytical calcula- 
tion. 

First the numerical calculation of the theoretical formulas presented in 
the preceding sections has been done for a given in Table I, where a M for 
the period-M orbit was determined by (2.2) for some odd numbers M. On 
the other hand, numerical iteration calculation has been done for a given in 
Table II, where the noninteger number M of a M was determined by (4.2). 
The time-correlation function of orbits is obtained by the direct calculation 
of (3.1). As an initial value for the iteration calculation of an orbit, an 
irrational number was used, for example, x 0 = 0.3127/~-.  The number of 
iteration steps, N, was 5 • 105 and 2 • 106, and all calculated elements of 
the orbit, x n (n = 0, 1 . . . .  ), were used to calculate the time-correlation 
function from (3.1). Some typical results of the numerical iteration calcula- 
tion are shown in Figs. 4-6 for M = 5.8, 9.0, and 11.5. Figure 4 shows the 
normalized time-correlation functions, where the oscillatory behavior lasts 
longer as M becomes larger. The power spectrum, the Fourier-Laplace 
transform of (3.1), is shown in Fig. 5. Especially, in Figs. 4b, 5b, and 6, we 
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Table II. The Linewidth of the Power Spectrum of Orbits with Periodic and 
Nonperiodic Vertices Obtained by the Numerical Iteration Calculation with 

N = 5 •  10 sa 

M a M ~- (aM - ~/2) 3' 3'Pm~x(W) 

5 . 8  1.489896 0.107031 0.195I 1.1802 

9.0 1.441 315 3.832 79 X 10 -2 4.721 X 10 -2 0.8735 

9.8 1.435 174 2.964 12 X 10 -2 3.634 X 10 -2 0.8502 

1 1 . 5  1.426282 1.70672 x 10 -2 1.902 x 10 -2 0.8095 

a The nonintegral number M of a M is calculated from (4.2). 3' and Pmax(W) are the flail-width 
at half-height and the peak height of the power spectrum, respectively. 
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Fig. 4. The normalized time-correlation function for M = 5.8, 9.0 and 11.5 calculated by 
numerical iteration with N = 5 • 105. (a) The dotted and dashed lines show the theoretical 
time-correlation function for M = 5 and 7, respectively, calculated from (3.28)-(3.30). (b) The 
dotted line shows the envelope of the theoretical time-correlation function for M = 9. (c) The 
dotted and dashed lines show the envelopes of the theoretical time-correlation function for 
M = 11 and 13, respectively. 

1.0~ 

0.5 

0.0 
0 

r 

M=5.8 

/ / "', 
/"/'/ \\ ~ / "'... ............ ---- 

1 2 
(a) c~/x 

Fig. 5. The power spectra for M = 5.8, 9.0, and  11.5 calculated by numerical iteration with 
N = 5 X 105, which are shown by solid lines in (a), (b), and (c), respectively. All the peak 
heights of the spectra presented here are normalized to unity. (a) The dotted and dashed lines 
show the theoretical power spectra for M = 5 and 7, respectively. (b) The dotted line shows the 
theoretical power spectrum for M = 9. (c) The dotted and  dashed lines show the theoretical 
power spectra for M = 11 and 13, respectively. 
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X 
1 ) ~ l 1 I 1 T 1 ] 

0.0 0.5 1.0 

Fig. 6. The invariant density for M = 9.0 calculated by numerical iteration with N = 2 • 10 6. 
The dotted line shows the theoretical invariant density for M = 9 calculated from (A.2) and 
(A.3a). 

can find that the present result for M = 9.0 by the numerical iteration 
calculation coincides completely with the theoretical exact analysis. In Fig. 
5, the peak of the power spectrum locates at w - - ~  and the line shape 
becomes sharper extremely as M is increased and reduces to the Lorentzian 
line shape, because the intensity of the power spectrum YPmax(~O) reduces 
rapidly to the third coefficient of (4.11), i.e., (7 + 4 ~ - ) / 1 7  = 0.7445208. 
The half-linewidth 7 at half-height of the power spectrum is shown in Fig. 7 

and listed in Table I, together with -ln[s2/a I and ~ - ( a  M - ~ - ) .  As M is 
increased, these values merge into a straight line rapidly, as can be seen in 
Fig. 7, where 7 decreases exponentially with M for M /> 9, i.e., 7 
= 2 -(M/2~. The above results give evidence that the asymptotic expressions 
(4.4) and (4.10) for the normalized time-correlation function also hold. 
Thus, it is concluded that the time-correlation function and power spec- 
trum vary continuously with a being varied continuously. 
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10-1 
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10-3 

10-4- 

L \  

. . . . . . . . . . . . .  ,.Isd l 
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Fig. 7. The half-linewidth at half-height of the theoretical power spectrum, 2/is shown by the 
solid line. The others shown by the dotted and dashed lines are approximate results deduced 
from the present theory. Those data are tabulated in Table I. The dots show the half-linewidth 
at half-height of the power spectra obtained by numerical iteratioil calcualtion tabulated in 
Table II. 

6. SHORT SUMMARY AND SOME REMARKS 

We have studied a band-splitting transition in terms of the time- 
correlation function of orbits of the map (1.1) by taking two sequences of 
values of a which accumulate to the transition point a = ~-  from above 
and below, respectively. We have found that, as a approaches the 
transition point a = V~, two eigenvalues of ~ f ,  the eigenvalues of the 
invariant measure and the critical mode, are apparently isolated from the 
others and have the above values equal and nearly equal to unity, respec- 
tively. Thus we have derived the asymptotic form (4.11) for the time- 
correlation function near the transition point. We have also found that the 
time-correlation function rapidly approaches the asymptotic form. In the 
limit a ~ - ,  the asymptotic form agrees with the time-correlation function 
(4.16) at the transition point. Therefore, we find that the asymptotic form 
of the time-correlation function can simply be obtained from the time- 
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correlation function at the transition point and the isolated eigenvalues of 

Numerical calculation has also been done for the maps with a being 
taken arbitrary. It turns out that the analytical results are consistent with 
the numerical ones. Therefore, it seems that the time-correlation function 
changes continuously, but not smoothly, with respect to the controled 
parameter a, as well as other average quantities. The critical region of this 
band-splitting transition is sufficiently wide and the critical slowing down is 
easily observable. 

The time correlation of orbits of the map (1.1) shows a 8-function-like 
decay at the transition point. This behavior comes from the symmetry of 
the slope. For the successive band-splitting transitions of the quadratic 
map, the iterated map has an asymmetric form in almost every band. (1) In 
order to study the effect of the asymmetry, let us consider the map 

= ~ f i x + l + f l / a - f l  if 0 < x <  1 - 1 / a  
h(x)  (6.1) 

- a x  + a i f  1 - 1 / a  < x < 1 

The map (6.1) has the phase diagram of Fig. 8. (17) The band-splitting to 
two bands occurs on the critical line 

a = at(7)  =--(1 + y)l/2 (6.2) 

where V = a / 3 .  The mechanism of this transition is the same as mentioned 
in Section 2, while the disappearance of odd period M = 2m + l occurs on 
the line a = aM(Y), where 

a~ m+l - (1 + V)a~ m-t - 2/= 0 (6.3) 

with a M > 1. The isolated eigenvalues of ~ f  are involved in eigenvalues of 
~ 0  whose eigenvalue equation, after being scaled out by a, is equal to (6.3) 
with a M 4= 1. Therefore, the relevant eigenvalues for the asymptotic form of 
the time-correlation function can be written for large m as 

aM(7 ) ~ ac(7 ) + 1 Y (6.4) 

1 y 
s2(7 ) --- - a ~ ( y )  + 2 [ac (y ) ]2  m ~ - a ~ ( Y )  + [aM(Y)  - a~(y) ]  (6.5) 

The time-correlation function on the critical line (6.2) can be calcu- 
lated in the similar way to Section 4. The eigenvalues of ~ l  are 0, [(1 - Y) 
/(Y + 1)] 1/2, - [ (1  - Y)/(7 + 1)] 1/2 if Y < 1, and 0, i[(y - 1) / (y  + 1)] 1/2, 
- i[(Y - 1)/(7 + 1)] 1/2 if 7 > 1, while those of 2/g~0 are the same as in 
Section 4; namely, 0, 1, - 1. The zero eigenvalue of ~ 0  and ~ 1  have no 
contribution to the time-correlation function. The decay of the time- 
correlation of orbits is described by the remaining two eigenvalues of ~ 1 .  
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1_ 
0 

2.0 

1.0 

0 
0 0.5 1 1.0 

Fig. 8. The phase diagram of the map h(x; a, r) given by (6.1). C and C* indicate the 
regions of chaos with and without the strong mixing, respectively. Successive band-splitting 
transitions occur in C*. I and W denote the regions called "island" and "window," respec- 
tively. P2 denotes the region of a stable period-2 orbit. In the meshed region, h(x; a, r)  cannot 
be constructed. The heavy lines are the phase boundaries, and the light lines in C represent the 
positions where the maximal orbits of periods 3, 4, and 5 appear. 

Then, the time-correlation function takes the form 

(x)2 + . .  ( -  1)" + ,,o ~ , 1 a-7~-5--.2 7 + 2  

G(x,x) = 

• [(7 + 2)(1 + cosmr) 

, /+2  

x [(7 + 2)cos mr 
2 L 

3 

2 (1 - cos mr) / 
( 1  - y)1/2 

if y < l  

2 ( ' y + 1 ) 1 / 2 ] ( ' - - 1 )  " / 2 y + 2  7 - ~  

sin .] if > ,  
(~ 

(6.6) 
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where (x)h = [37 + 2 -  2(y + 1)1/2]/4T. The asymptotic form near the 
transition point is obtained by replacing the second term of (6.6) by 

l S2 n~- ( ) l(_,:oxp 
with fixed ~{. As "~--> 1, (6.6) agrees with (4.15). This would support the 
assumption that, in the successive band-splitting transition of the quadratic 
map, the asymmetry of the iterated map does not give any important effect 
to the time correlation of orbits. However, it must be remarked that the 
time correlation of orbits is not the 3-correlation given in Ref. 13. (18) 

The map (6.1) also has band-splitting transitions which are due to a 
different mechanism from the map (1.1). They occur on the boundaries 
between C and I in Fig. 8. Making use of the order relation of periodic 
orbits in terms of the topological entropy, we can study the critical 
phenomena of these band-splitting transitions in the same way as the 
above. Further discussion will be given elsewhere. 

APPENDIX: CALCULATION OF THE T IME-CORRELATION 
FUNCTION ~n 

We shall show all quantities used in our calculation of the time- 
correlation function (~. The j th  interval is given by 

I f(j+ ')(0) IX f(J-')(O), f(j+ ')(0) V f(J-1)(O) ] for Case (I) (A.la) 
Is. = f(J+ 2)(0) A f(2)(0), f(J  + 2)(0) V f(J)(O) ] for Case (II) (A. lb) 

with f(J)(0) = [a - (a 2 - 2 ) ( -  a)Y-']/(a + 1) except for 11 = [riO), f(2)(0)] 
of Case (I), see also Fig. 2, where the symbols V and A mean to take 
larger one and smaller one between the two, respectively. 

The j th  elements of the column vectors bk and ak are given by 

and 

b j ; k  ~-- S k b j + l ; k  

2 1 + skJ for Case (I) S k 

4 + ( s 2 -  2)N * s x - 1  

s~ 1 - s #  ~j+~) 
4 + (s 2 - 2)N* s k - 1 for Case (II) 

s j; k = - t k a j +  1; k 

( t[-J) --I 1 1- for Case (I) 

for Case (II) 

(A2) 

(A.3a) 

(A.3b) 

(A.4) 

(A.5a) 

(A.5b) 
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where j = odd, and N* of (3.31) has been used. Similarly, the jth elements 
of the row vectors b~ and a~ can be written as 

I( s - 2 ) ( s  k - 1)s~ -2  + l ( s k 2 - -  2)~jl 
b*J=[(2--s2)(Sk 1)s~ -1  Sk 

for Case (I) (A.6a) 

for Case (II) (A.6b) 

and 

I . t k (-- t #  + 8j,, % = 'TV-f 
[ - ( - t #  +' 

for Case (I) 

for Case (II) 

(A.7a) 

(a.7b) 

b k and b~, have been derived from the fact that e~ --- b~'. 
The row vectors c~ and c~' itroduced in (3.24) are given by 

C ~ - -  l;j -- 

a-~bl*j-l( a2-2a+l , I ,  12(1- la4) ( -a2) j  

21 ~, )Sj,, 
( a 2 - 2 ]2[ 1 

~ ] \ 1 - ~  

~ +  1 b b + l ( a 2 - 2  ~ ) 2 ( 1  - ~44 ) ( -  a2)J+ 

for Case (I) 

(A.Sa) 

for Case (II) 

(A.8b) 

and 

% =  

a ]2b, + 2a c* 1 ( a 2 - 2 1 3 [ 1  - 1 ) 
- ( 7 ~ i J  ';J 5-TT ~;J+3 ,~+1 j \  7 '~j 

1 [ o t 2 - 2 ) 3 (  1 ) 
+ 3 ~ a + 1 1 + ~-7 8j,, for Case (I) (A.9a) 

7 
for Case (II) (A.9b) 

The first and second moments of x are obtained by taking the scalar 
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products as 

a ( a -  1) 2 

( x ) , =  (c~ - b i ) -  a + 1 4 + (a  2 -  2)N* 

( x 2 > f = ( c ~ . b l ) = _  ( a )2 2o~ + "~--'+'T (C~' " b l )  -I- 

(A.10) 

2 ( . -  1) 
( a + l ) [ 4 + ( a  2 - 2 ) N * ]  

(A.11) 

Many pairs of scalar products are used in (3.26). By making use of the 
relations 

�9 -( */ (b~'~o ak) = -a (b~ ' .  ~ l a k )  + 2 ~ b,;j aN; k 
a j = o d d  

( a Z .  ~ 0 b , ~  = - ~(aZ~, .b,) + _2 ( 2 at;jtbN, 
Os \ j = o d d  ' ] ' 

we obtain 
2(s,,- 1) 2 t k - 1 

(b~ "ak) -- s, + t-------7- N*tk (A.12) 

(a~< .b,) - 2 s,(s, + 1) (a.13) 
t k + s ,  4 + ( s  2 - 2 ) N *  

Therefore, substituting (A.12) into (3.21), we obtain 

t 2 - 1  2 ( s , - 1 ) (  1 ~ ) 
(A.14) 

/ 

Notice that ~ f  transforms each orthogonalized polynomial of order I 
which is defined on Ij into a linear combination of the polynomials of the 
same order defined on I k. The orthogonal relation of the polynomials of 

(A.15) 

st(s~ + 1) 
4 +  ( s 2 -  2)N * 

(A.16) 

order 0 and 1 leads to 
(cT" ak) = --fllk 

By straightforward calculations we obtain 

( a -  1) 2 
( c ~ . b , ) -  aSrla (b~'-b,) 

s t + ct 2 

+ 
2 ( a -  1) t 2 - 1  a 4 _ 2 a 2 + 4  
3 ( a + 1 )  2 N*tk tk + a 3 

(A.17) 
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Our time-correlation function (3.26) is complicated, because the ampli- 
tude of each eigenmode has summations over other eigenvalues, such as 
~l(e~'" bt)Bl~ and ~kfll~(a~-" bl). However, the summations can easily be 
carried out by making use of the relation 

U F'(x)  
E 1 _ 

j : l  x Xj F(x)  

where F(x) = HN= l(X - )~j). Taking the left-hand sides of (3.17) and (3.18) 
for F(x), we obtain 

N 
a ~2~b, 2a 

(c~'" b,)fl,~ = ( ~ } t ' " a/0 a + 1 (e~. a~) 
/=1 

a - 1  t ~ -  1 (a 4 - 2 a  2 + 3 ) 4 + 2 a 2 ( a  2 - 2 )  

( a +  1) 2 N*tk (a 3+tk)  [ t ~ + a 2 ( a  2 - 2 ) ]  

N (S  l - -  1) 2 
flzk(a~ -b,) = a (b~ "bl) + 

k=, 7- 1 ( 4  + 2) 

(A.18) 

2(a 2 -  1) 

4 + (a 2 - 2)N* 

(A.19) 

Substituting (A.13), (A.17), and (A.18) into (3.26), we find that the 
amplitude of the eigenmode t k in (3.26) takes the form 

2a(a  + 1 ) ( a -  l )  3 ( 1 -  4 ) [  4 - -  2a2( a 2 -  2)] 
(1.20) 

4 + ( a  2 - 2 ) N *  3N*tk(a+ tk ) (a  3+t~)  It  2 + a z ( a  2 - 2 ) ]  

Similarly, substituting (A.16) and (A.19) into (3.26), we find that the 
amplitude of the eigenmode s t can be written as 

2(a + 1)(a - 1) 3 s,(s z - a)2(s, + 1) 
for l =/: 1 

4 + ( a 2 - 2 ) N  * ( a Z + s z ) ( s 2 + a 2 - 2 ) [ 4 + ( s 2 - 2 ) U  *] 

(A.21) 

For l = l, it gives the constant term (x)~. After the normalization of (3.27) 
with the use of (A.10) and (A.11), we obtain (3.28) with (3.29) and (3.30). 
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